Supporting Antimicrobial Stewardship from the Laboratory

Dr Rod Givney

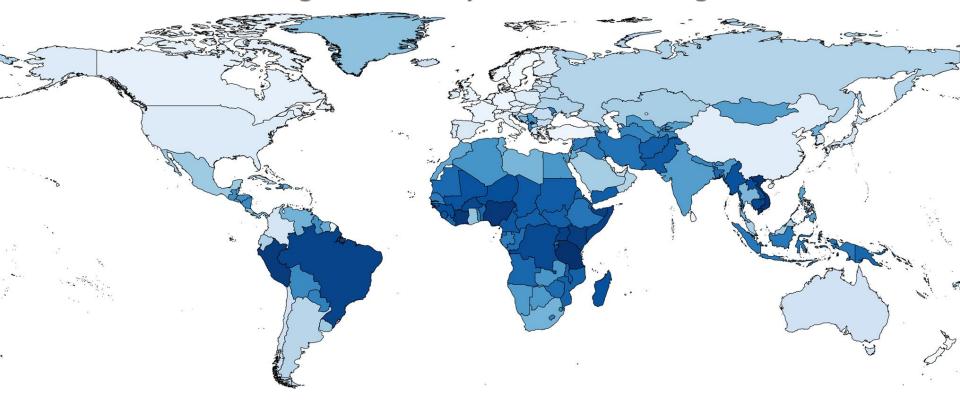
Director Microbiology, NSW Health Pathology Hunter

rodney.givney@health.nsw.gov.au

Publish by: Luis Migue Bugallo Sánchez - Own work, CC BY-SA 3.0, https://commons.wik.media.org/w/index.php?curid=377941

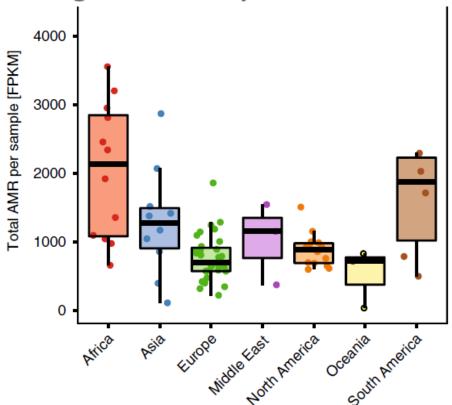
Acknowledgement of Country

NSW Health Pathology acknowledges the traditional custodians of the lands on which we work and pay our respects to ancestors and Elders, past and present.


We are committed to honouring Australian Aboriginal and Torres Strait Islander peoples' unique cultural and spiritual relationships to the land, waters and seas and their rich contribution to society.

Data & information

Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage



NATURE COMMUNICATIONS | (2019)10:1124 | https://doi.org/10.1038/s41467-019-08853-3 | www.nature.com/nature.com

Data & information

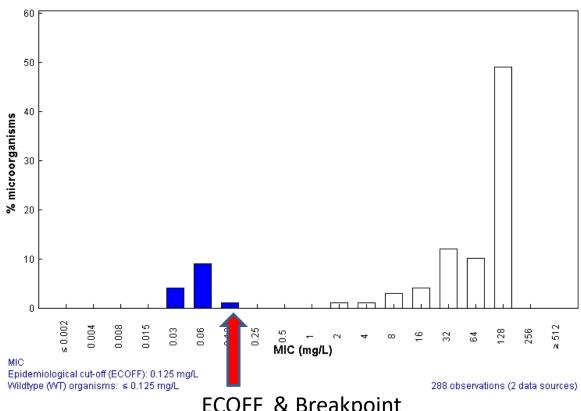
Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage

Nature of the data

- Molecular
 - CARAlert, mec gene detection
- Minimum inhibitory concentrations
 - Disk zones
- Epidemiological cut-offs (ECOFFs)
- Breakpoints

DATA Minimum inhibitory concentrations

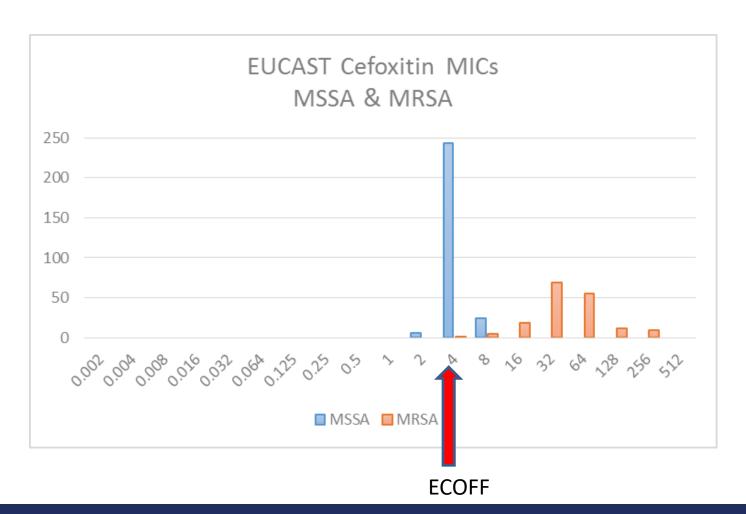
- Standardised inoculum
 - Broth: "McFarland 0.5" \approx 1.5 x 10⁸ CFU /ml

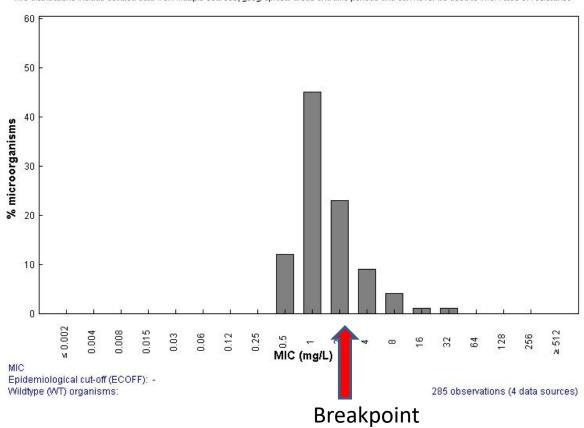

- 2 fold dilutions of antimicrobial in mg/L
 - Approximately log linear distribution of isolates

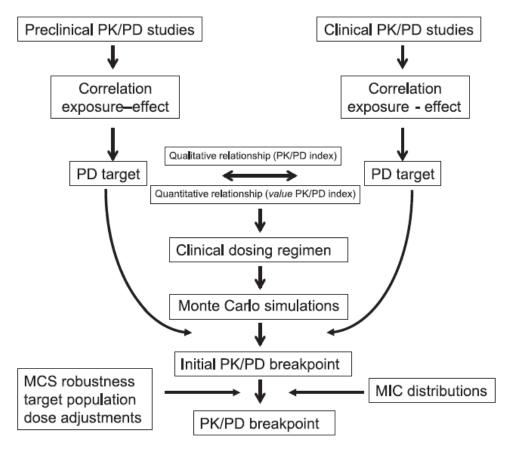


DATA MIC & ECOFF

Benzylpenicillin / Staphylococcus aureus MSSA International MIC Distribution - Reference Database 2019-06-19


MIC distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance

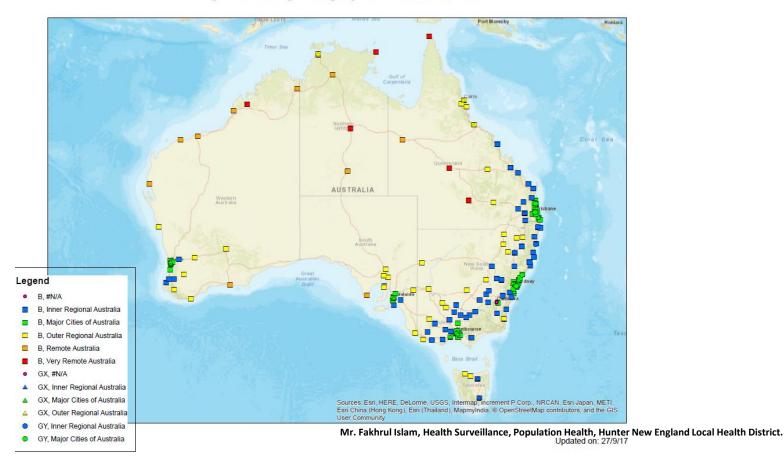

DATA MICs, ECOFFs & breakpoints


Cefazolin / Escherichia coli International MIC Distribution - Reference Database 2019-06-19

MIC distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance

DATA PK / PD & breakpoints

Mouton et al. Clin Microbiol Infect 2012; 18: E37-E45


DATA Breakpoint: S or R (or I ?)

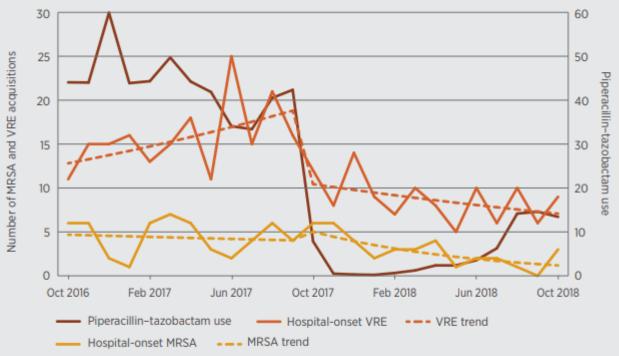
- Breakpoint determines if an isolate is classified as susceptible, resistant or intermediate
 - unless trumped by a molecular marker
- Three different standards for breakpoints
 - EUCAST, CLSI, CDS
 - Annual updates
- ISO 20776-1: 2006 (now 2019)
- Australian practice has been to report "intermediate" as "resistant", but that's about to change

DATA Source of the data

Locations of NATA Accredited Microbiology Laboratories - Australia By Laboratory Category and Remoteness

Turning data into information

- Antibiograms
 - Selective "cascade" reporting
- Cumulative antibiograms


INFORMATION: ANTIBIOGRAMS Cascade reporting

* Page down for extra sensitivities *	AMP	AMC	AMU	KΖ	KZU	TMP	F	CRO	CAZ	TZP	GM	TOB	AK	CIP	NRX	MEP
Escherichia coli >10 ^ 8/L	R	S		S		R	S	S	S		S			S	S	

INFORMATION: ANTIBIOGRAMS Cascade reporting

Figure A: Methicillin-resistant *Staphylococcus aureus* (MRSA) and vancomycin-resistant enterococci (VRE) acquisitions with changes to piperacillin-tazobactam use (DDD/1,000 OBD)

DDD/1,000 OBD = defined daily doses per 1,000 occupied bed days
Source: Ferguson JK, Kozierowski K, Munnoch SA, Oldmeadow C, Chiu S. Reduction in MRSA and VRE colonisation and infection associated with sustained reduction in broad spectrum antibiotic usage at a large tertiary hospital [article submitted to Medical Journal of Australia, January 2019].

INFORMATION: ANTIBIOGRAMS Cascade reporting

• "We suggest selective and cascade reporting of antibiotics over reporting of all tested antibiotics (weak recommendation, low-quality evidence)." Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of

America and the Society for Healthcare Epidemiology of America CID 2016:62 (15 May)

.....selective reporting of AST has never been evaluated using an experimental design....." Binda F, Fougnot S, De

Monchy P on behalf of the ANTIBIO-CIBLÉ Scientific Committee, et al Impact of selective reporting of antibiotic susceptibility test results in urinary tract infections in the outpatient setting: a protocol for a pragmatic, prospective quasi-experimental trial BMJ Open 2018;8:e025810. doi: 10.1136/bmjopen-2018-025810

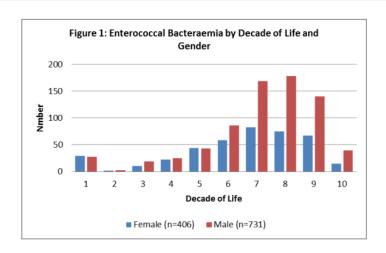
(DIS)INFORMATION Censorship

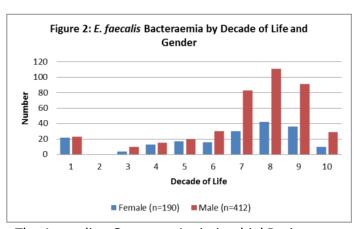
- Censored tests
 - "Pathology stewardship"
- Censored reports
 - Stenotrophomonas maltophilia
 - Staphylococcus aureus?

INFORMATION Cumulative antibiograms

Figure A1: Example of a cumulative, hospital-level antibiogram for blood culture isolates

Organism Group	No. Organisms	-		Penicillin	Amoxicillin	Flucloxacillin	Amoxicillin-	Piperacillin- tazobactam	Cefalotin	Cefazolin	Ceftriaxone	Ceftazidime	Cefepime	Meropenem	Gentamicin	Amikacin	Sulpha- trimethoprim	Ciprofloxacin	Fusidic Acid	Rifampicin	Gentamicin (High Level)	Erythromycin/Clarithr omycin	Clindamycin	Tetracyclines	Quinupristin- dalfopristin	Vancomycin
All isolates	2142	100.0	%			- 11	40		40			_						70	70	00	0 _					400
Coagulase negative Staphylococci	637	29.7	70 n	627		41	40		40 621			R					59	79	79	98		44	64	68		100
Staphylododd		19.0	%	627	43	621	621 79	92	621	77	90	/	93	100	91	99	629 69	86	623	626		626	625	628		632
Escherichia spp	407 19.0		l n		407		407	406		407	407		406	407	407	*329	407	407								
Staphylococcus aureus			%	26		89	89	100	89		,,,,	R	-100		10.	020	95	92	95	100		86	87	95		100
(ALL)	211	9.9	n	211		211	211		211	/							211	*185	*186	*186		211	211	211		211
M-b-:-II	147	6.9	%		R		94	92	/	84	93		95	100	99	100	86	93								
Klebsiella spp	147	6.9	n				147	147		147	147		147	147	147	*119	147	147								
viridans Streptococci	118	5.5	%	85					100		89						68		R		100	50	85	74		100
viridans Sueptococci	110	5.5	n	117					*15		115						*25				*83	117	117	117		116
Pseudomona		4.7	%		R		R	89		R	R	92	94	94	96	96	R	94						R		
s aeruginosa			n					100				100	100	100	100	*77		100								
Enterococcus spp	90	4.2	%	77					R	R	R	R					R		R	43	81	R	R	30	33	87
			n	90																*23	*83			90	*76	90
Spore forming GPB	57	2.7	%	17					75								92	97				76	49	78		98
	9,		n	*54					*12								*25	*39		-	_	*21	*53	*50		*52
Enterobacter cloacae complex		2.6	%		R		R	66		R	71		86	98	93	100	77	93				_		_		
complex			n					56			56		56	56	56	*43	56	56								


DRAFT - Specification for a Hospital Cumulative Antibiogram - June 2019


15

".....it is noted that while national data is informative, local data may differ due to service provision or demographic differences in local populations. As a result, local data is the preferred reference for local AMR surveillance." "To avoid misinterpretation of antibiograms, clinical requests for access to antibiograms should be supported by concurrent consultation with an infectious diseases specialist or

INFORMATION Laboratory data *plus* epidemiology: AGAR

The Australian Group on Antimicrobial Resistance

E.faecium bacteraemia: VanA positive among total Vancomycin resistant Enterococci								
Year	Number and (%)							
2013	8 of 310 (2.6%)							
2014	35 of 371 (9.4%)							
2015	78 of 391 (19.9%)							
2016	85 of 202 (21.3%)							
2017	112 of 461 (25%)							

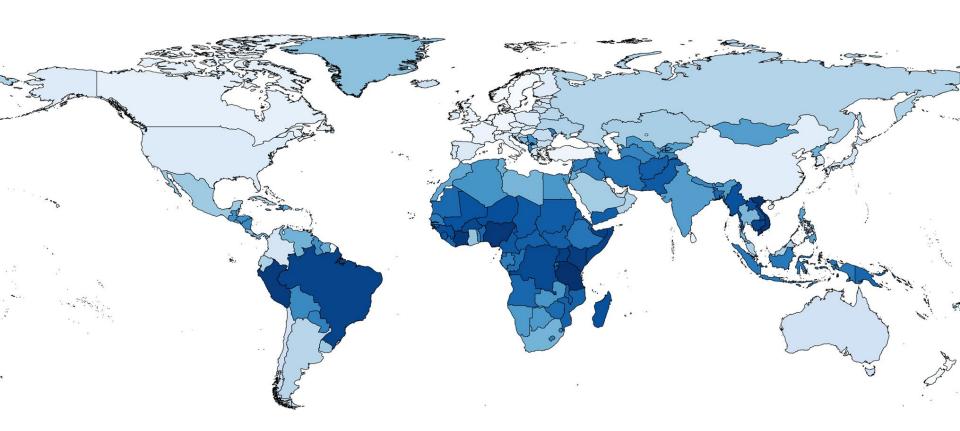
There was no significant difference in mortality between vancomycin non-susceptible (VRE) and vancomycin susceptible E. faecium (VSE): 58/203 (29.1%) and 56/212 (26.4%) respectively (p=0.6)

Australian Enterococcal Sepsis Outcome Program (AESOP) 2017

Miscellaneous

- Comments on microbiology reports
- Rapid notification of organism identification and susceptibilities
- Alternative diagnoses
- Evidence for effect ?

Summary


- Data & information
- Surveillance
 - Surveillance is data for action
 - Evaluation of surveillance
 - Speed & action

Publish by: Luis Miguel Bugallo Sánchez - Own work, CC BY-SA 3.0 https://commons.wikimedia.org/w/index.php?curid=377941

Questions?

NATURE COMMUNICATIONS | (2019)10:1124 | https://doi.org/10.1038/s41467-019-08853-3 | www.nature.com/nature.com

