# Countdown from five: Dealing with the top antimicrobial resistant threats



# Multi resistant organisms – why worry?

- ▶ Disease burden
- **▶**Cost
- ► Mortality
- ► Increasing incidence
- ► Limited or no treatment
- ► Impact of infection control measures
- **▶** Transmission
- ▶ Preventable



#### **Approach to control**

- ► Understand causes and contributing factors
- ▶ Reduce unnecessary use of antibiotics in people, animals
  - GPs / Hospital / Veterinarians /Agriculture growth
- ► Surveillance of incidence
  - Monitor impacts / Identify infected /Control spread
- ▶ Research
  - New antibiotics / effective AMS / reduce transmission



#### **World Health Organization**

"...this serious threat is no longer a prediction for the future; it is happening right now in every region of the world and has the potential to affect anyone, of any age, in any country."

- ► Antimicrobial resistance is one of the key global health issues facing our generation.
- ▶ No one country can act in isolation.
- ► Increasing international travel, medical tourism and global trade provide the opportunities for resistance to spread across all borders.



#### **WHO**

- ► AMR in bacteria
  - Klebsiella pneumoniae carbapenem
  - E. coli
  - ► Gonorrhoea third generation cephalosporin
  - Staphlylococcus aureus
  - Enterobacteriaceae colistin
  - ▶ Tuberculosis
- ► Malaria
- **►**HIV
- ►Influenza



#### **US CDC**

- ▶ Urgent Threats
  - ► Clostridioides difficile
  - ► Carbapenem-resistant Enterobacteriaceae (CRE)
  - ► Drug-resistant Neisseria gonorrhoeae





#### **US CDC**

- Serious Threats
  - Multidrug-resistant Acinetobacter
  - Drug-resistant Campylobacter
  - ► Fluconazole-resistant Candida
  - Extended-spectrum Beta-lactamase producing Enterobacteriaceae
  - Vancomycin-resistant Enterococcus
  - Multidrug-resistant Pseudomonas aeruginosa
  - Drug-resistant non-typhoidal Salmonella
  - Drug-resistant SalmonellaSerotype Typhi
  - Drug-resistant Shigella
  - ► <u>Methicillin-resistant Staphylococcus aureus</u>
  - ► <u>Drug-resistantStreptococcus pneumoniae</u>
  - Drug-resistant Tuberculosis





#### **US CDC**

- **▶** Concerning Threats
  - ► <u>Vancomycin-resistant Staphylococcus aureus(VRSA)</u>
  - ► Erythromycin-Resistant Group A Streptococcus
  - ► Clindamycin-resistant Group B Streptococcus





#### **Australia's strategy**

#### Goal:

- minimise the development and spread of AMR
- ensure the continued availability of effective antimicrobials
- supports a One Health approach









# RESPONDING TO THE THREAT OF antimicrobial resistance

#### **Australia's strategy**

#### **Objectives:**

- across human/animal health, agriculture/food sectors:
  - increase awareness and understanding of AMR
  - implement effective antimicrobial stewardship
  - develop integrated national surveillance
  - improve infection prevention and control practices
  - develop a national AMR research agenda
  - strengthen international partnerships
  - establish clear governance arrangements



#### **Australia**

- **▶** Commission
  - ► AURA
    - Coordination Broad guidelines
    - Sentinel lab surveillance
- ► Australian Health Protection PC / Comm Dis Network Aus
  - Governance formal jurisdictional processes
  - Surveillance specific information to inform control
  - Sharing of intelligence among jurisdictions
  - ► Common guidelines alignment of operational policies



#### Critical antimicrobial resistance Alerts

**Species** Critical Resistance

Enterobacteriaceae Carbapenemase-producing or RM- producing

Enterococcus species Linezolid non-susceptible

M tuberculosis Multi-Drug Resistant (MDR)

N gonorrhoeae Ceftriaxone/azithromycin non-susceptible

Salmonella species Ceftriaxone non-susceptible strains

Shigella species MDR strains

Staphylococcus
Vancomycin, linezolid, daptomycin non-susceptible

Penicillin reduced susceptibility

#### **NSW**

- ► CEC/LHDs
  - ► Infection control policy, manual, advice
- **► CEC/Health Protection NSW** 
  - Priorities
    - Expert advisory panel
  - ► MRO surveillance and response protocols for LHDs
    - Expert working groups CPE, VRE, C auris
  - Surveillance notification or monitoring
  - Practice network to share and build knowledge
    - LHD (technical and governance)



#### MROs among notifiable diseases

- ► Shigella
  - Increasing, Importations with local spread, MSM
- **▶** Gonococcus
  - resistance to fluoroquinolone, cephalosporin, azithromycin and ceftriaxone
- ► Tuberculosis MRTB (INH/RIF), XRTB
  - Mandatory expert panel for each case
- ► Salmonella typhi and non typhoidal
- ► Already surveillance and response procedures led by PHUs, need to capture consistent AMR data



#### The Panel's Top Five ... for now

- ► Focus NSW public hospitals
  - Carbapanemase producing Enterobacteriaceae (CPE)
  - Pseudomonas aeruginosa carbapenem-resistant
  - ► Vancomycin resistant *enterococcus* (VRE)
  - ► Methicillin resistant *staphylococcus aureus* (MRSA)
  - ► Multi-resistant acineobacter baumanii (MRAB)
- ► Subsequent emergence
  - Candida auris



#### Carbapanemase producing Enterobacteriaceae

- ► What it is Gut bacteria, eg Klebsiella, E coli carbapenemresistant. 5 most important types of carbapenemases found in CPE:
  - ▶ Imipenemase (IMP)
  - Klebsiella pneumoniae carbapenemase (KPC)
  - New-Delhi metallo-β-lactamase (NDM)
  - Verona integron-encoded metallo-β-lactamase (VIM)
  - Oxacillinases (OXA)
- ► Carriage vs illness: yes, ratio unclear
- ► Infection typically causes: invasive dx, mortality 30-50%
- ►Increase risk: Travel, hospital, NH, ventilators, lines, A/B
- ► Transmission: person to person, environment



#### Carbapenem-resistant Pseudomonas aeruginosa

- ► What it is: Bacteria commonly found in water and soil
- ► Carriage vs illness: Yes
- ►Infection typically causes: bacteraemia, pneumonia, folliculitis (hot tub rash), swimmers ear, conjunctivitis, osteomyelitis
- ►Increase risk: impaired immunity, burns, cancer, cystic fibrosis, HIV, surgery, ICU, tubes
- ► **Transmission**: person to person via hands, contact with contaminated (medical, environmental), coughing or sneezing.



#### Vancomycin resistant enterococcus

- ► What it is: Bacteria commonly live in the GI tract
- ► Carriage vs illness: yes
- ►Infection typically causes: Bacteraemia, from either an existing infection (abscess, UTI) or medical device (urinary or intravenous catheter)
- ► Increase risk: immune suppression cancer, dialysis, intensive care, transplants.
- ► Transmission: person to person (hands of another person), environmental surfaces or medical equipment that have become contaminated; not through the air or by coughing or sneezing



#### Methicillin resistant staphylococcus aureus

- ► What it is: common bacterium
- ► Carriage vs illness: colonises nose, throat, skin. Commonly in the nose and on the skin of humans and occasionally in some animals (for example pigs, dogs, horses).
- ►Infection typically causes: mild skin infections (boils), osteomyelitis, bacteraemia
- ►Increase risk: hospitalisation, immune suppression, surgery, tubes, lines, chronic wounds
- ► Transmission: person to person (staff, visitors), environment



#### Multi-resistant acineobacter baumanii

- ► What it is Acinetobacter bacteria commonl in soil and water. A. baumannii 80% of infections.
- ► Carriage vs illness: especially in tracheostomy sites or open wounds.
- ► Infection typically causes: pneumonia, septicaemia, wound infections
- ►Increase risk: Outbreaks in ICU and healthcare settings housing very ill patients. Immune suppression, chronic lung disease, or diabetes, ventilation, prolonged hospital stay, open wounds, invasive devices
- ► Transmission: person-to-person contact or contact with contaminated surfaces.



#### Candida auris

- ► What it is emerging fungus, serious global health threat. Often multidrug-resistant: 1 to 3 drug classes. Hard to identify with standard laboratory methods. Outbreaks in healthcare settings
- ► Carriage vs illness: Carriage
- ► Infection typically causes: bloodstream infections, heart, brain, etc; death
- ► Increase risk: hospitalised and nursing home patients with serious medical problems, lines, tubes, recent surgery, diabetes, broad-spectrum antibiotic and antifungal use.
- ► Transmission: unlike most *Candida* spreads person to person. last on skin and surfaces a long time



#### **Challenges**

- ► Varying level of concern
- ► Resourcing of infection control response
- ► Little visibility of private hospitals or aged care facilities
- ► Variable ways of recording infection control alerts in eMR
- ► MRO screening variable depending on local experience
- ► Reporting of outbreaks
- ▶ Best surveillance methods?
  - Notification under Public Health Act
  - Analysis of administrative data sets?
  - Aggregate reporting?
  - Outbreak reporting?





#### **Objectives**

Understand and monitor local epidemiology

► Early detection of clusters and outbreaks

Support facilities with prompt investigation and infection prevention and control implementation





## Implementation of NSW CPE Surveillance and Response Program



# The journey so far... (28 February – 28 May 2019)



• 80 notifications

72 cases

1 outbreak

### NSW CPE notifications (infection and colonisation): 28 February - 28 May 2019, by date of collection



## Age and sex distribution of NSW CPE cases notified from 28 Feb - 28 May 2019



## NSW CPE notifications received between 28 February – 28 May 2019, by specimen type



# NSW CPE notifications by species: 28 February - 28 May 2019



### NSW CPE notifications by carbapenemase type: 28 February - 28 May 2019



# What are we missing?

- ▶ Colonisation versus infection ► Known CPE contact
- ▶ Previous history of CPE
- ► Travel history
- ► Overseas hospitalisation

- ► Medical comorbidities
- ► Unknown risk factors
- ► Whole genome sequencing





#### **Common threads**

- ►Increasing, costly
- ► Hospital bugs tend to be sticky
- ▶ Colonisation
- ► Person to person spread
- ► Environment contamination and spread important, variable
- ► Risks for acquisition exposure to the bug (eg, while traveling, in health care)
- ► Most colonized people never know it
- ► Risks for infection immune supp, lines, tubes, surgery
- ► Many unknowns



#### **Prevention key**

- ► AMS
- ►Infection control
- ► Environmental cleaning
- ► Case detection
- ► Contact management
- Need to better understand and share knowledge about what works



